

# Lecture 14

- Review
- Lorentz transformations of EM fields
- Kramers-Kronig relations, dispersion

• We return to the study of EM fields in media, but at a more advanced level

→ absorption

→ non-locality in time

→ convolution and frequency

→ analytic properties

→ kramers-kronig relations

→ example: resonant absorption model. →  
→ very general!

• Let us remember the following effect:  
polarisation of dielectric media  
by external electric field

$$\vec{P}(\vec{x}) = \sum_n \vec{d}_n \cdot f(\vec{x}_n - \vec{x}) \xrightarrow{\text{smeared function}}$$

↓ electric polarization of the medium.

$$\langle \eta \rangle(\vec{x}) = \rho(\vec{x}) - \vec{D}_x \cdot \vec{P}(\vec{x})$$

From this we derived averaged Maxwell equations:

$$\vec{J} \cdot \vec{E} = \frac{\rho}{\epsilon_0} - \frac{\vec{J} \cdot \vec{P}}{\epsilon_0}$$

We also defined the Displacement vector

$$\vec{D} = \epsilon_0 \vec{E} + \vec{P}$$

And we did a similar treatment for the magnetic phenomenon

$$\vec{H} = \frac{1}{\mu_0} \vec{B} - \vec{M} \xrightarrow{\text{magnetisation}}$$

The Maxwell equations eventually read:

$$\vec{J} \cdot \vec{D} = \rho$$

$$\vec{J} \times \vec{E} + \frac{\partial \vec{B}}{\partial t} = 0$$

$$\vec{J} \times \vec{H} - \frac{\partial \vec{D}}{\partial t} = \vec{J}$$

$$\vec{J} \cdot \vec{B} = 0$$

To make use of them we need the relation between  $\vec{E}$  and  $\vec{D}$  and  $\vec{H}$  and  $\vec{B}$  which we chose

as

$$\vec{D}(\vec{x}, t) = \epsilon \vec{E}(\vec{x}, t)$$

$$\vec{H}(\vec{x}, t) = \frac{1}{\mu} \vec{B}(\vec{x}, t)$$

This result is correct for static fields, however, we also used it for our discussion of EM waves. In the case of time-dependent fields there are two new effects:

→ absorption (  $\epsilon$  and  $\mu$  have imaginary parts )

→ dispersion ( relation between  $\vec{E}$  and  $\vec{B}$  ( $\vec{H}$  and  $\vec{B}'$ ) is non-local in time )

The two effects turn out to be closely related.

Let us first understand why imaginary parts of  $\epsilon$  and  $\mu$  lead to absorption of energy of EM fields by the medium.

Let us consider a monochromatic plane wave in a material:

$$\vec{E} = \frac{1}{E} e^{i\omega t + i\vec{k} \cdot \vec{r}}$$

suppose  $\vec{k} = (k_x, 0, 0)$

then  $k_x = \sqrt{\epsilon \mu} \omega \frac{1}{c}$

If  $\epsilon$  or  $\mu$  have imaginary part then  $k_x$  has imaginary part  $\Rightarrow$  wave exponentially decays

From now on we will focus on  $\epsilon$ , assuming  $\mu$  real and constant. Then a general relation between  $D$  and  $E$  is

$$D(t) = \epsilon_0 E(t) + \epsilon_0 \int_0^{\infty} J(\tau) E(t-\tau) d\tau$$

Here we singled out the first term

for convenience, but most importantly,  
integral is over positive  $\tau \Rightarrow$  causality!

Let us now Fourier transform this  
expression:

$$D(+)=\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} D(\omega) e^{-i\omega t} d\omega$$

$$D(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} D(+e^{i\omega t} dt$$

$$D(\omega) = \varepsilon_0 \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{i\omega t} E(+) dt +$$

$$+ \varepsilon_0 \int_0^{\infty} d\tau \int_{-\infty}^{\infty} \frac{dt}{\sqrt{2\pi}} e^{i\omega t} f(\tau) E(+ - \tau) =$$

$$= \varepsilon_0 E(\omega) + \varepsilon_0 E(\omega) \int_0^{\infty} d\tau f(\tau) e^{i\omega \tau} =$$

$$= \varepsilon(\omega) E(\omega)$$

$$\frac{\epsilon(\omega)}{\epsilon_0} = 1 + \int_0^{\infty} d\tau f(\tau) e^{i\omega\tau} \quad (4)$$

$\epsilon(\omega)$  has real and imaginary parts:

$$\epsilon(\omega) = \epsilon'(\omega) + i \epsilon''(\omega)$$

Because  $f(\tau)$  is real

$$\epsilon(-\omega) = \epsilon^*(\omega) :$$

$$\epsilon'(-\omega) = \epsilon'(\omega) \text{ and } \epsilon''(-\omega) = -\epsilon''(\omega)$$

In dielectrics when  $\omega \rightarrow 0$  we get the static situation (fields do not depend on time)  $\epsilon$  becomes equal to real static susceptibility.

# Causality and analytic properties of $\epsilon(\omega)$

- We will now consider  $\epsilon$  as a function of complex variable  $\omega$ , like we did for the Green's function of  $\square$  operator.
- Because integral in (4) starts at  $\tau=0$   $\epsilon(\omega)$  is an analytic function in the upper half plane: integral converges if  $\text{Im}\omega > 0$   $e^{i\omega\tau} \sim e^{-(\text{Im}\omega)\cdot\tau}$ .

We assume that the "memory" is finite so integral also converges for real  $\omega$  (it is not true for conductors for  $\omega=0$ )

For very large real  $\omega$  we can show that  $\frac{\epsilon(\omega)}{\epsilon_0} = 1 - \frac{\text{const}}{\omega^2} + \dots$

This is because at very high frequencies charged particles are basically free.

Then

$$m\ddot{r} = eE^1 e^{i\omega t} \Rightarrow$$

$$\Rightarrow r \sim \frac{1}{\omega^2}$$

$$\vec{P} = \sum e\vec{r} \approx \frac{1}{\omega^2} \Rightarrow \vec{D} - \sum \vec{E} \sim \frac{1}{\omega^2}$$

$\epsilon(\omega)$

$\omega$

analytic

↓ even faster

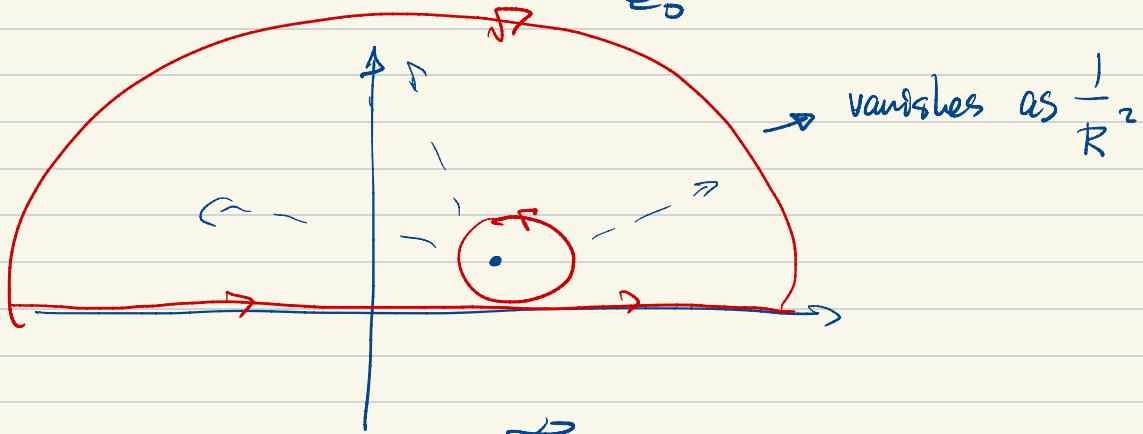
$$\rightarrow 1 + \frac{\text{const}}{\omega^2}$$

$$\text{Im } \epsilon > 0$$

We will now use Cauchy's theorem to relate  $\varepsilon^1(\omega)$  and  $\varepsilon^4(\omega)$  for real  $\omega$  (physical)

$$F(z) = \frac{1}{2\pi i} \oint \frac{F(\omega)}{\omega - z} d\omega$$

$$\text{take } F(z) = \frac{\varepsilon(z)}{\varepsilon_0} - 1$$



$$\frac{\mathcal{E}(z)}{\varepsilon_0} - 1 = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{\mathcal{E}(x)/\varepsilon_0 - 1}{x - z} dx$$

## Mathematical interlude

Next we are going to use some properties of regulated singular integrals (or distributions).

Define the "principal value" integral:

$$P \int_{-\infty}^{\infty} \frac{1}{x} f(x) dx = \lim_{\delta \rightarrow 0} \left( \int_{-\infty}^{-\delta} + \int_{\delta}^{\infty} \right) \frac{1}{x} f(x) dx$$

The limit exists for any smooth function  $f(x)$ .

Define also distributions  $\frac{1}{x+i\delta}$  and  $\frac{1}{x-i\delta}$

so that

$$I_{+/-}[g(x)] = \lim_{\delta \rightarrow 0} \int_{x \pm i\delta} \frac{1}{x} f(x) dx$$

Again it can be shown that the limit exists.

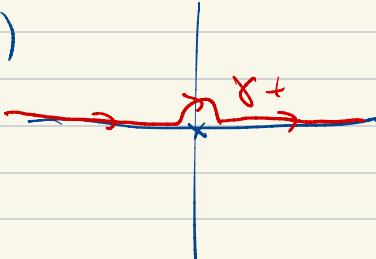
One more, familiar to us distribution is Dirac  $\delta$ -function:

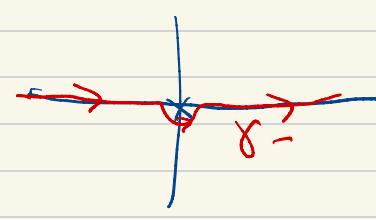
$$\int dx \delta(x) f(x) = f(0).$$

The distributions are related to each other. Let us find these relations.

$\frac{1}{x \pm i\delta}$  distributions can be equivalently

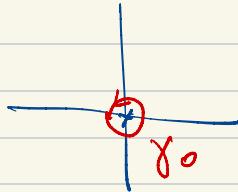
thought of as small contour deformations:

$$\int_{-\infty}^{\infty} dx \frac{1}{x + i\delta} f(x) = \int_{-\infty}^{\infty} dx \frac{1}{x} f(x)$$


$$\int_{-\infty}^{\infty} dx \frac{1}{x - i\delta} f(x) = \int_{-\infty}^{\infty} dx \frac{1}{x} f(x)$$


Let us consider

$$I_-[f(x)] - I_+[f(x)] = \int_{\gamma_0} \frac{dx}{x} f(x) =$$



$$= 2\pi i f(0) = 2\pi i \int_{-\infty}^{\infty} \delta(x) f(x) dx$$

Here, even if  $f(x)$  is not an analytic function, all what we use is that  $f(x)$  is regular at zero. Since the above is true for any  $f(x)$  we conclude that

$$\frac{1}{x-i\delta} - \frac{1}{x+i\delta} = 2\pi i \delta(x) \quad (*)$$

Now consider

$$\int_{-\infty}^{\infty} \left( \frac{1}{x+i\delta} + \frac{1}{x-i\delta} \right) f(x) dx =$$

$$= \left[ \int_{-\infty}^{-1} + \int_1^{\infty} + \int_{-1}^1 \right) \left( \frac{1}{x+i\delta} + \frac{1}{x-i\delta} \right) f(x) dx$$

choose  $1 > \Lambda > \delta$ , then

$$\left( \int_{-\infty}^{-1} + \int_1^{\infty} \right) \left( \frac{1}{x+i\delta} + \frac{1}{x-i\delta} \right) f(x) dx \approx$$

$$\approx \left( \int_{-\infty}^{-1} + \int_1^{\infty} \right) \frac{2}{x} f(x) dx = 2P \int_{-\infty}^{\infty} \frac{dx}{x} f(x)$$

At the same time,  $\Lambda \approx 0$

$$\int_{-1}^1 \left( \frac{1}{x+i\delta} + \frac{1}{x-i\delta} \right) f(x) dx = \int_{-1}^1 dx \frac{2x}{x^2 + \delta^2} f(0) +$$

$$+ \text{const.} \int_{-1}^1 dx \frac{2x^2}{x^2 + \delta^2} \cdot f'(0) \leq \frac{\text{const.}}{\delta^2} \cdot 1^3$$

we can choose  $\lambda$  and  $\delta$  so that this expression is arbitrarily small. So we conclude that

$$\frac{1}{x+i\delta} + \frac{1}{x-i\delta} = 2 P \frac{1}{x} \quad (*)$$

Combining \* and \*\* we get

$$\frac{1}{x-i\delta} = P \frac{1}{x} + \pi i \delta(x).$$

End of mathematical interlude.

We continue with the expression

$$\frac{\varepsilon(z)}{\varepsilon_0} - 1 = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{\varepsilon(x)/\varepsilon_0 - 1}{x - z} dx$$

Now we take  $z = \omega + i\delta$  <sup>real</sup>  $\rightarrow$  infinitesimal.

$$\frac{1}{x - \omega - i\delta} = P \left( \frac{1}{x - \omega} \right) + \pi i \delta(x - \omega)$$

$$\frac{1}{2} \left( \frac{\varepsilon(\omega)}{\varepsilon_0} - 1 \right) = \frac{1}{2\pi i} P \int_{-\infty}^{\infty} \frac{\varepsilon(x)/\varepsilon_0 - 1}{x - \omega} dx$$

Let's take real and imaginary parts:

$$\frac{\varepsilon'(w)}{\varepsilon_0} - 1 = \frac{1}{\pi} P \int_{-\infty}^{\infty} \frac{\varepsilon''(w)}{x - w} dx$$

$$\frac{\varepsilon''(w)}{\varepsilon_0} = -\frac{1}{\pi} P \int_{-\infty}^{\infty} \frac{\varepsilon'(x) - 1}{x - w} dx$$

These are the Kramers-Kronig relations

Using symmetry properties we get

$$\frac{\varepsilon'(w)}{\varepsilon_0} = 1 + \frac{2}{\pi} P \int_0^\infty \frac{x \varepsilon''(x)}{x^2 - w^2} dx$$

$$\frac{\varepsilon''(w)}{\varepsilon_0} = -\frac{2w}{\pi} P \int_0^\infty \frac{\varepsilon'(x)/\varepsilon_0 - 1}{x^2 - w^2} dx$$

Importance of these relations is in the fact that measuring absorption  $\varepsilon''(w)$  allows to reconstruct the entire dispersion of  $\varepsilon(w)$ .

Let us consider an example

$$\frac{\varepsilon}{\varepsilon_0} = 1 + \frac{\gamma}{w_0^2 - \omega^2 - i\gamma\omega}$$

(resonant absorption on a line)

$$\frac{\Sigma}{\Sigma_0} = 1 + \frac{\text{const}}{\omega^2} \quad \text{at } \omega \rightarrow \infty \quad v$$

$$\frac{\Sigma}{\Sigma_0} = 1 + \frac{\gamma \frac{\omega_0^2 - \omega^2}{(\omega_0^2 - \omega^2)^2 + \gamma^2 \omega^2}}{\gamma \frac{\omega_0^2 - \omega^2}{(\omega_0^2 - \omega^2)^2 + \gamma^2 \omega^2}} \approx$$

$$\approx 1 + \frac{1}{\omega_0^2 - \omega^2}, \quad \text{when } \gamma \text{ is small,}$$

and  $\omega \neq \omega_0$

$$\frac{\Sigma^4}{\Sigma_0} = \frac{\gamma \gamma \omega}{(\omega_0^2 - \omega^2)^2 + \gamma^2 \omega^2}$$

Let's check  $kk$ : (for  $\omega \neq \omega_0$  and  $\gamma$ -small)

$$\int_0^\infty \frac{dx}{x^2 - \omega^2} \frac{\gamma \gamma x}{(\omega_0^2 - x^2)^2 + \gamma^2 x^2} \approx$$

$$\approx \int_{\omega_0 - \gamma}^{\omega_0 + \gamma} \frac{1}{\omega_0^2 - \omega^2} \cdot \frac{\gamma \gamma x}{(\omega_0^2 - x^2)^2 + \gamma^2 x^2}$$

$$\int dz \frac{z \propto \omega_0}{(z\omega_0)^2 z^2 + \gamma^2 \omega_0^2} \approx \lambda$$

- Let's come back to plane

waves.  $\vec{E} = \vec{E} \cdot e^{i\vec{k}\vec{z} - i\omega t}$

Since we derived all equations in frequency space, the relations between  $k$  and  $\omega$  still hold:

$$i\omega \mu(\omega) \vec{H} = c \vec{J} \times \vec{E}$$

$$i\omega \epsilon(\omega) \vec{E} = -c \vec{J} \times \vec{H} \Rightarrow$$

$$\vec{k}^2 = \epsilon(\omega) \mu \frac{\omega^2}{c^2}$$

Let us first assume that  $\epsilon$  is real. Then group velocity of

light is given by  $u = \frac{dw}{dk} = \frac{c}{d(nw)/dw}$

where  $n(w) = \sqrt{\epsilon(w)/\mu}$ .

If  $\epsilon$  is imaginary  $k$  develops imaginary part. Assume  $k \sim (k_x, 0, 0)$

$$k_x = \sqrt{\epsilon \mu} \frac{w}{c} = [n(w) + i\alpha(w)] \frac{w}{c}$$

$\uparrow$   
extinction  
coefficient.

$kk$ -like relations can be also derived for  $n$  and  $\alpha$